sábado, 12 de febrero de 2011

Calor y Temperatura

             
                                       

Escalas termométricas

En todo cuerpo material la variación de la temperatura va acompañada de la correspondiente variación de otras propiedades medibles, de modo que a cada valor de aquélla le corresponde un solo valor de ésta. Tal es el caso de la longitud de una varilla metálica, de la resistencia eléctrica de un metal, de la presión de un gas, del volumen de un líquido, etc. Estas magnitudes cuya variación está ligada a la de la temperatura se denominan propiedades termométricas, porque pueden ser empleadas en la construcción de termómetros.
Para definir una escala de temperaturas es necesario elegir una propiedad termométrica que reúna las siguientes condiciones:
  1. La expresión matemática de la relación entre la propiedad y la temperatura debe ser conocida.
  2. La propiedad termométrica debe ser lo bastante sensible a las variaciones de temperatura como para poder detectar, con una precisión aceptable, pequeños cambios térmicos.
  3. El rango de temperatura accesible debe ser suficientemente grande.

Escala Celsius


Una vez que la propiedad termométrica ha sido elegida, la elaboración de una escala termométrica o de temperaturas lleva consigo, al menos, dos operaciones; por una parte, la determinación de los puntos fijos o temperaturas de referencia que permanecen constantes en la naturaleza y, por otra, la división del intervalo de temperaturas correspondiente a tales puntos fijos en unidades o grados.
El científico sueco Anders Celsius (1701-1744) construyó por primera vez la escala termométrica que lleva su nombre. Eligió como puntos fijos el de fusión del hielo y el de ebullición del agua, tras advertir que las temperaturas a las que se verificaban tales cambios de estado eran constantes a la presión atmosférica. Asignó al primero el valor 0 y al segundo el valor 100, con lo cual fijó el valor del grado centígrado o grado Celsius (ºC) como la centésima parte del intervalo de temperatura comprendido entre esos dos puntos fijos
.

Escala Fahrenheit


En los países anglosajones se pueden encontrar aún termómetros graduados en grado Fahrenheit (ºF). La escala Fahrenheit difiere de la Celsius tanto en los valores asignados a los puntos fijos, como en el tamaño de los grados. Así al primer punto fijo se le atribuye el valor 32 y al segundo el valor 212. Para pasar de una a otra escala es preciso emplear la ecuación:
t(ºF) = 1,8 · t(ºC) + 32
donde t(ºF) representa la temperatura expresada en grados Fahrenheit y t(ºC) la expresada en grados Celsius o centígrados.

Escala Kelvin


La escala de temperaturas adoptada por el SI es la llamada escala absoluta o Kelvin. En ella el tamaño de los grados es el mismo que en la Celsius, pero el cero de la escala se fija en el - 273,16 ºC. Este punto llamado cero absoluto de temperaturas es tal que a dicha temperatura desaparece la agitación molecular, por lo que, según el significado que la teoría cinética atribuye a la magnitud temperatura, no tiene sentido hablar de valores inferiores a él. El cero absoluto constituye un límite inferior natural de temperaturas, lo que hace que en la escala Kelvin no existan temperaturas bajo cero (negativas). La relación con la escala centígrada viene dada por la ecuación:
T(K) = t(ºC) + 273,16
siendo T(K) la temperatura expresada en grados Kelvin o simplemente en Kelvin.

Dilatación y termometría


El hecho de que las dimensiones de los cuerpos, por lo general, aumenten regularmente con la temperatura, ha dado lugar a la utilización de tales dimensiones como propiedades termométricas y constituyen el fundamento de la mayor parte de los termómetros ordinarios. Los termómetros de líquidos, como los de alcohol coloreado empleados en meteorología o los de mercurio, de uso clínico, se basan en el fenómeno de la dilatación y emplean como propiedad termométrica el volumen del líquido correspondiente.
La longitud de una varilla o de un hilo metálico puede utilizarse, asimismo, como propiedad termométrica. Su ley de variación con la temperatura para rangos no muy amplios (de 0º a 100 ºC) es del tipo:
lt = l0 (1 + at)
donde lt representa el valor de la longitud a t grados centígrados, l0 el valor a cero grados y es un parámetro o constante característica de la sustancia que se denomina coeficiente de dilatación lineal. La ecuación anterior permite establecer una correspondencia entre las magnitudes longitud y temperatura, de tal modo que midiendo aquélla pueda determinarse ésta.
Una aplicación termométrica del fenómeno de dilatación en sólidos lo constituye el termómetro metálico. Está formado por una lámina bimetálica de materiales de diferentes coeficientes de dilatación lineal que se consigue soldando dos láminas de metales tales como latón y acero, de igual longitud a 0 ºC. Cuando la temperatura aumenta o disminuye respecto del valor inicial, su diferente da lugar a que una de las láminas se dilate más que la otra, con lo que el conjunto se curva en un sentido o en otro según que la temperatura medida sea mayor o menor que la inicial de referencia. Además, la desviación es tanto mayor cuanto mayor es la diferencia de temperaturas respecto de 0 ºC. Si se añade una aguja indicadora al sistema, de modo que pueda moverse sobre una escala graduada y calibrada con el auxilio de otro termómetro de referencia, se tiene un termómetro metálico.

Otras propiedades termométricas


Algunas magnitudes físicas relacionadas con la electricidad varían con la temperatura siguiendo una ley conocida, lo que hace posible su utilización como propiedades termométricas. Tal es el caso de la resistencia eléctrica de los metales cuya ley de variación con la temperatura es del tipo:
R = R0 (1 + at + bt2)
siendo R0 el valor de la temperatura a 0 ºC y a y b dos constantes características que pueden ser determinadas experimentalmente a partir de medidas de R para temperaturas conocidas y correspondientes a otros tantos puntos fijos.
Conocidos todos los parámetros de la anterior ecuación, la medida de temperaturas queda reducida a otra de resistencias sobre una escala calibrada al efecto. Los termómetros de resistencia emplean normalmente un hilo de platino como sensor de temperaturas y poseen un amplio rango de medidas que va desde los -200 ºC hasta los 1 200 ºC.
Los termómetros de termistores constituyen una variante de los de resistencia. Emplean resistencias fabricadas con semiconductores que tienen la propiedad de que su resistencia disminuye en vez de aumentar con la temperatura (termistores). Este tipo de termómetros permiten obtener medidas casi instantáneas de la temperatura del cuerpo con el que están en contacto.

Aplicación de las escalas termométricas


La relación existente entre las escalas termométricas más empleadas permite expresar una misma temperatura en diferentes formas, esto es, con resultados numéricos y con unidades de medida distintas. Se trata, en lo que sigue, de aplicar las ecuaciones de conversión entre escalas para determinar la temperatura en grados centígrados y en grados Fahrenheit de un cuerpo, cuyo valor en Kelvin es de 77 K.
Para la conversión de K en ºC se emplea la ecuación
t(ºC) = T(K) - 273
es decir:
t(ºC) = 77 - 273 = - 196 ºC
Para la conversión en ºF se emplea la ecuación:
t(ºF) = 1,8 · t(ºC) + 32
t(ºF) = 1,8 · (- 196) + 32 = - 320,8 ºF

1 comentario:

  1. Me parecio muy interesante y completo para que lo entiendan los alumnos de secundaria.
    muy buena recopilacion de trabajo

    ResponderEliminar